
计算概论A—实验班

函数式程序设计

Functional Programming

胡振江，张 伟

北京⼤学 计算机学院

2023年09～12⽉

第6章：递归函数

Recursive Function

Adapted from Graham’s Lecture slides

Function
✤As we have seen, many functions can naturally be defined in

terms of other functions.

 fac :: Int -> Int

 fac n = product [1..n]

fac 4
=

product [1..4]
=

product [1,2,3,4]
=

1*2*3*4
=

24

Recursive Function / 递归函数
In Haskell, functions can also be
defined in terms of themselves.

Such functions are called recursive.

 fac :: Int -> Int

 fac 0 = 1

 fac n = n * fac (n-1)

fac 3
=
3 * fac 2

=
3 * (2 * fac 1)

=
3 * (2 * (1 * fac 0))

=
3 * (2 * (1 * 1))

=
3 * (2 * 1)

=
3 * 2

=
6

 ghci> fac (-1)

 *** Exception: stack overflow

Why Recursive Function
✴Some functions, such as factorial, are simpler to define in terms

of other functions.

✴As we shall see, however, many functions can naturally be
defined in terms of themselves.

✴Properties of functions defined using recursion can be proved
using the simple but powerful mathematical technique of
induction.

Recursive Function on List
✴Recursion is not restricted to numbers, but can also be used to

define functions on lists.

 product :: Num a => [a] -> a

 product [] = 1

 product (n:ns) = n * product ns

product [2,3,4]

=

2 * product [3,4]

=

2 * (3 * product [4])
=

2 * (3 * (4 * product []))
=

2 * (3 * (4 * 1))
=

24

Recursive Function on List
✴Using the same pattern of recursion as in product we can define

the length function on lists.

 length' :: [a] -> Int

 length' [] = 0

 length' (_:xs) = 1 + length' xs

length [1,2,3]

=

1 + length [2,3]

=

1 + (1 + length [3])

=

1 + (1 + (1 + length []))
=

1 + (1 + (1 + 0))
=

3

Recursive Function on List
✴Using a similar pattern of recursion we can define the reverse

function on lists.

 reverse :: [a] -> [a]

 reverse [] = []

 reverse (x:xs) = reverse xs ++ [x]

rev [1,2,3]
=

rev [2,3] ++ [1]
=

(rev [3] ++ [2]) ++ [1]
=

((rev [] ++ [3]) ++ [2]) ++ [1]

=

(([] ++ [3]) ++ [2]) ++ [1]
=

[3,2,1]

课堂练习
✤给出下⾯程序中的insert的类型和定义，完成“插⼊排序”算法的定义

 isort :: Ord a => [a] -> [a]

 isort [] = []

 isort (x:xs) = insert x (isort xs)

 insert :: Ord a => a -> [a] -> [a]

 insert x [] = [x]

 insert x (y:ys) | x <= y = x:y:ys

 | otherwise = y:(insert x ys)

多参数递归
✴Functions with more than one argument can also be defined

using recursion.

Zipping the elements of two lists

 zip :: [a] -> [b] -> [(a,b)]

 zip [] _ = []

 zip _ [] = []

 zip (x:xs) (y:ys) = (x,y) : zip xs ys

多参数递归
Remove the first n elements from a list

 drop :: Int -> [a] -> [a]

 drop 0 xs = xs

 drop _ [] = []

 drop n (_:xs) = drop (n-1) xs

Appending two lists
 (++) :: [a] -> [a] -> [a]

 [] ++ ys = ys

 (x:xs) ++ ys = x : (xs ++ ys)

Multiple Recursion
Functions can also be defined using multiple recursion,

in which a function is applied more than once in its own definition.

 fib :: Int -> Int

 fib 0 = 0

 fib 1 = 1

 fib n = fib (n-2) + fib (n-1)

Multiple Recursion

 qsort :: Ord a => [a] -> [a]

 qsort [] = []

 qsort (x:xs) = qsort smaller ++ [x] ++ qsort larger

 where

 smaller = [a | a <- xs, a <= x]

 larger = [b | b <- xs, b > x]

Multiple Recursion
qsort [3,2,4,1,5]

qsort [2,1] ++ [3] ++ qsort [4,5]

qsort [1] ++ [2] ++ qsort [] qsort [] ++ [4] ++ qsort [5]

[1] [] [] [5]

Mutual Recursion
Functions can also be defined using mutual recursion, in which two
or more functions are all defined recursively in terms of each other.

 even :: Int -> Bool

 even 0 = True

 even n = odd (n-1)

 odd :: Int -> Bool

 odd 0 = False

 odd n = even (n-1)

第6章：递归函数

Recursive Function

Adapted from Graham’s Lecture slides

作业

作业
6-1 Without looking at the standard prelude,

define the following library functions using recursion:
Decide if all logical values in a list are true

 and :: [Bool] -> Bool

Concatenate a list of lists

 concat :: [[a]] -> [a]

Produce a list with n identical elements

 replicate :: Int -> a -> [a]

Select the nth element of a list (starting from 0)

 (!!) :: [a] -> Int -> a

Decide if a value is an element of a list

 elem :: Eq a => a -> [a] -> Bool

作业
6-2 Define a recursive function

 merge :: Ord a => [a] -> [a] -> [a]

that merges two sorted lists of values to give a
single sorted list. For example:

 ghci> merge [2,5,6] [1,3,4]

 [1,2,3,4,5,6]

作业
6-2 Define a recursive function

 msort :: Ord a => [a] -> [a]

that implements merge sort, which can be specified
by the following two rules:

A. Lists of length <= 1 are already sorted;
B. Other lists can be sorted by sorting the two halves

and merging the resulting lists.

第6章：递归函数

Recursive Function

Adapted from Graham’s Lecture slides

就到这⾥吧

