e LR a1
R *ﬁ_ﬁzr 1T

Functional Prcgrammlng

AL, 5K 1
IERKEF 1T EF MR
2023%F09~12H

Adapted from Graham’s Lecture slides

BO6E: 1EHIIREN

Recursive Function

Function

*» As we have seen, many functions can naturally be defined in
terms of other functions.

fac 4

product [1..4]

—>
product [1,2,3,4]

fac n = product [1..n]

1x2*%3%4

24

Recursive Function / 313 & %k

In Haskell, functions can also be fac 3
defined In terms of themselves.
. . 3 x fac 2
Such functions are called recursive.

3 x (2 % fac 1)

3% (2 x (1 x fac 0))

3 x (2 x (1 % 1))

3 % (2 % 1)

ghci> fac (-1) 3 % 2
**x% Exception: stack overflow

0

Why Recursive Function

X Some functions, such as factorial, are simpler to define in terms
of other functions.

X As we shall see, however, many functions can naturally be
defined in terms of themselves.

X Properties of functions defined using recursion can be proved
using the simple but powerful mathematical technique of
iInduction.

Recursive Function on List

X Recursion is not restricted to numbers, but can also be used to

define functions on lists.

product :: => |a] —> a

product 1
product (n:ns) = n % product ns

product [2,3,4]

2 x product [3,4]

2 x (3 % product [4])

2 x (3 x (4 % product []))
2 % (3 % (4 x 1))

24

Recursive Function on List

X Using the same pattern of recursion as in product we can define
the length function on lists. length [1.2,3]

1 + length [2,3]

1 + (1 + length [3])

1 + length' xs 1+ (1 + (1 + length [1))

1+ (1 + (1 + 0))

3

Recursive Function on List

X Using a similar pattern of recursion we can define the reverse
function on lists.

reverse :: [al
reverse
reverse (x:xs)

—> [a]

reverse xs ++ |[Xx]

rev [1,2,3]

rev [2,3] ++ [1]

(rev [3] ++ [2]) ++ [1]

((rev [] ++ [3]) ++ [2]) ++ [1]

(([] ++ [3]) ++ [2]) ++ [1]

[3,2,1]

TR E 2>
o 44t TETR R Finsertf X BME N, SER RN HIR EIAIE N

isort :: a => [a] — [a]
1sort —
isort (x:xs) = insert x (isort xs)

insert :: a => a —> [a] —> [a]

insert x = [x]
insert x (y:ys) | X Xi1y:ys
| otherW1se y:(insert x ys)

225!

X Functions with more than one argument can also be defined
using recursion.

Zipping the elements of two lists

zip :: [a] — [b] — [(a,b)]
Z1p =

Z1p _ =
zip (x:xs) (y:ys) = (x,y) : zip XS yS

22 &%

Remove the first n elements from a list
drop :: —> [a] —> [a]
arop 0 Xxs = XS
arop _ =
drop n (_:xs) = drop (n-=1) xs

Appending two lists

Multiple Recursion

Functions can also be defined using multiple recursion,
In which a function is applied more than once in its own definition.

fib (n-2) + fib (n-1)

Multiple Recursion

gqsort :: a => [a] — [a]
qsort =
qsort (x:xs) = gsort smaller ++ [x] ++ qsort larger

smaller [a | a <- x5, a <= X]
larger [b | b <= xs, b > x]

Multiple Recursion

qsort [3,2,4,1,5]

gsort [2,1]

++ [3] ++

qsort [4,5]

gsort [1]

++ [2] ++

gqsort []

qsort []

[1]

++ [4] ++

gsort [5]

[]

[]

[5]

Mutual Recursion

Functions can also be defined using mutual recursion, in which two
or more functions are all defined recursively in terms of each other.

False
even (n-1)

Adapted from Graham’s Lecture slides

BO6E: 1EHIIREN

Recursive Function

¢E I

6-1 Without looking at the standarad prelude,
define the following library functions using recursion:

Decide if all logical values in a list are true

and :: [Bool] —> Bool

Concatenate a list of lists Select the nth element of a list (starting from 0)

concat :: [[a]l]]l] — [al

\ Produce a list with n identical elements H Decide if a value is an element of a list \

replicate :: Int —> a —> [al elem :: Eq a => a —> [a] —> Bool

¢l

6-2 Define a recursive function

merge :: Ord a => [a] — [a] — [a]

that merges two sorted lists of values to give a
single sorted list. For example:

ghci> merge [2,5,6] [1,3,4]

[1,2,3,4,5,6]

¢l

6-2 Define a recursive function

msort :: Ord a => [a] —> [al

that implements merge sort, which can be specified
by the following two rules:

A. Lists of length <=1 are already sorted;

B. Other lists can be sorted by sorting the two halves
and merging the resulting lists.

Adapted from Graham’s Lecture slides

BO6E: 1EHIIREN

Recursive Function

L2 X 2 E

